Overview
At iFluids Engineering, we provide technically rigorous Noise Study and SoundPLAN Modeling designed for complex industrial environments. Our services are grounded in empirical acoustic science and international compliance frameworks, delivering detailed assessments that support project approval, safety assurance, and design optimization.
Why Noise Studies Matter in Industrial Settings
In refineries, gas plants, compressor stations, and metering facilities, equipment such as compressors, turbines, heaters, and valves can generate high noise levels, often exceeding 90–120 dBA at source. Prolonged exposure at these levels poses occupational hazards and environmental risks. Our noise studies help quantify these impacts and simulate propagation through realistic models to:
- Prevent hearing loss in personnel
- Ensure compliance with ISO 9613-2, ISO 9614-1/2, ISO 11203, ISO 15664, and OSHA 1910.95 permissible limits
- Minimize acoustic load on nearby residential or protected areas
Our Specialized Service Capabilities

Predictive Noise Impact Assessment
- Normal Operations Analysis: Evaluation of continuous noise emissions from equipment operating at design conditions.
- Emergency Scenario Simulation: Includes PSV discharges, blowdown events, and relief conditions where noise can exceed 115–125 dBA.
- Receiver Grid Mapping: Placement of receivers at boundary walls, control rooms, walkways, and sensitive zones to assess SPL.
- Exposure Zoning: Mapping SPL contours (>85 dBA, >90 dBA, >100 dBA) to classify areas requiring PPE, restricted access, or engineering controls.
SoundPLAN 3D Acoustic Modeling
- Emission Input Modeling: Equipment characterized by sound power level (PWL) and octave band data. Emission angles (directivity) and elevation adjusted to reflect true source behavior.
- Propagation Algorithms: ISO 9613-2 method for outdoor propagation, accounting for geometric divergence, atmospheric absorption, ground attenuation, and barrier diffraction.
- Reflection/Absorption Coefficients: Set per material specifications (concrete, steel, insulation, vegetation).
- Topographical and Meteorological Inputs: Includes site elevation, terrain slope, prevailing wind direction, and ambient temperature layers.
Instrumented On-site Measurement & Model Calibration
- Noise Logging: Sound level meters (Type 1, IEC 61672 Class 1) used to record LAeq, LAmax, and octave bands over representative operating conditions.
- Calibration Protocol: Calibrated with a 94 dB reference source before and after each session.
- Spot Mapping: Measurement grid covers locations near major equipment and boundary receptors; spatial data geo-referenced for SoundPLAN overlay.
- Model Tuning: Measured values compared to simulated SPL for error correction within ±2 dB accuracy range.
Regulatory Compliance Verification
- ISO 9613-2, ISO 1996-2, ISO 9614-1/2, ISO 11200/11203: Ensures methodology adheres to globally accepted acoustic modeling standards.
- OSHA 29 CFR 1910.95: Time-weighted average exposure (TWA) and allowable exposure durations are calculated for occupational zones.
- Local Environmental Codes: QatarEnergy 75 dBA day/night limit at industrial boundaries; RCER-2015 and EIA permit limits applied as per region.
- BS 4142 and ISO 15665: Used where residential proximity and pipeline noise insulation is critical.
- EEMUA 140/142: Referenced for noise measurement and acoustic pipeline insulation guidelines.
Noise Mitigation Strategy Engineering
- Source Control: Recommendations include low-noise design options (e.g., centrifugal compressors over reciprocating, low-noise valves).
- Path Control: Acoustic louvers, silencers, and barriers designed using insertion loss (IL) tables.
- Receiver Protection: Control room façade upgrades (e.g., triple glazing, acoustic cladding) proposed where LAeq > 65 dBA at façades.
- Design Feedback Loop: Re-simulated scenarios with proposed mitigation to demonstrate effectiveness (≥10 dB reduction typical).
SoundPLAN Modeling Methodology

- Source Characterization
- Sound Power Level (Lw) specified in octave bands (63 Hz to 8 kHz)
- Emission type defined: point source (pump), line source (piping), area source (cooling bay)
- Directivity index and mounting height accurately represented
- Geometry & Material Modeling
- 3D CAD-based layout imported or manually constructed
- Structure surfaces assigned specific reflection coefficients (e.g., Steel: 0.7, Concrete: 0.6, Vegetation: 0.2)
- Grid and Receptor Placement
- Receivers placed at operator walkways (1.5 m height), building façades (4 m), site boundaries (5 m intervals)
- Grid resolution optimized to 2–5 m spacing for high accuracy in complex layouts
- Simulation Execution
- SPL maps generated in LAeq and LAmax formats for multiple scenarios (normal, emergency, mitigated)
- Isopleths at 5 dB intervals used to define exposure zones
- Result Verification and Compliance Reporting
- Model outputs validated against measurement where applicable
- Summary tables for exceedance, mitigation effectiveness, and final compliance statement
Typical Applications
- Compressor Packages: Fuel gas, booster, inlet
- Heater Systems & Pressure Reducing Stations (PRS)
- Control Buildings and Switchgear Rooms
- Tank Farms and NGL Loading Bays
- Scraper Stations, Jetty Terminals, Pig Launchers
Standards and Tools Applied
Standard | Purpose |
ISO 9613-2 | Outdoor sound attenuation calculation |
ISO 9614-1/2 | Determination of sound power using intensity methods |
ISO 11203 | Emission sound pressure at workstations |
ISO 15664 | Open plant noise design methodology |
ISO 15665 | Acoustic insulation standards for piping systems |
ISO 11546-2 | Evaluation of enclosure insulation performance |
BS 4142 | Assessment of industrial noise near residential zones |
EEMUA 140/142 | Acoustic measurement and industrial pipeline insulation standards |
OSHA 29 CFR 1910.95 | Occupational exposure limits |
RCER-2015, QP-STD-V-004 | Regional boundary noise limits |
SoundPLAN | Full-spectrum acoustic modeling & isopleth generation |
Why Choose iFluids Engineering?
- Deep industry experience in compressor and metering station noise prediction
- Measurement-calibrated models to ensure real-world accuracy
- Region-specific regulatory expertise (Qatar, KSA, UAE, India)
- Design-phase feedback for acoustic control integration in FEED/EPC stages
- Multilingual reporting formats compliant with client and authority standards
Get in Touch
Ensure your industrial project is acoustically compliant, safe, and future-ready.
Contact iFluids Engineering to commission a detailed Noise Study and SoundPLAN Model today.
Noise exposure isn’t just a compliance matter—it’s an engineering obligation. Partner with iFluids Engineering for technically certified, audit-ready acoustic modeling solutions.