A valuable management tool in assessing the overall safety performance of the Chemical Process Industry is Risk Analysis. This techniques provide advanced quantitative means to supplement other hazard identification, analysis, assessment, control and management methods to identify the potential for such incidents and to evaluate control strategies. Risk Analysis techniques provide advanced quantitative means to supplement other hazard identification, analysis, assessment, control and management methods to identify the potential for such incidents and to evaluate control strategies.
Based on consideration of factors such as the physical & chemical properties of the fluids being handled, the arrangement of equipment, operation & maintenance procedures and process conditions, external hazards such as third party interference, extreme environmental conditions, aircraft / helicopter crash should also be considered.
Operating Parameters, Inventory and Range of Incidents – Catastrophic Failure of container, Large holes, Small holes & Leak at fittings.
As per CPR 18 E guidelines & Reference Manual BEVI Risk Assessments Version 3.2 only the Loss of Containment (LOC) which is basically the release scenarios contributing to the individual and/ or societal risk are included in the QRA. LOCs of the installation are included only if the following conditions are fulfilled:
In consequence analysis, several calculation models is made use to estimate the physical effects of an accident (spill of hazardous material) and to predict the damage (lethality, injury, material destruction) of the effects. The calculations can roughly be divided in three major groups:
To calculate the risk associated with a LOC scenario, it is necessary to estimate the failure frequency. The frequency of occurrence of such an event is based on the probability of the LOC scenario and the presence of constraints that influence the development of the event.
The failure frequencies of full release cases are considered since the release is consistent with flow through the defined hole, beginning at the normal operating pressure, and continuing until controlled by emergency shutdown or inventory exhaustion.
The total failure frequencies for isolatable section are calculated by combining the base failure frequency obtained from the international database (CPR18E – Committee for Prevention of Disasters, Netherlands (Edition: PGS 3, 2005) and Modification factors.
For gas/ oil releases from the gas/ oil handling system, where a large percentage of rupture events may be due to third party damage, a relatively high probability of immediate ignition is generally used.
Delayed ignition probabilities can also be determined as a function of the cloud area or the location.
The assessment of risks is based on the consequences and likelihood. Likelihood assessment is the methodology used to estimate the frequency or probability of occurrence of an incident.
The results of Risk Analysis are often reproduced as Individual and group risks and are defined as below:
IR is the probability of death occurring as a result of accidents at a plant, installation or a transport route expressed as a function of the distance from such an activity. It is the frequency at which an individual or an individual within a group may be expected to sustain a given level of harm (typically death) from the realization of specific hazards.
The second definition of risk involves the concept of the summation of risk from events involving many fatalities within specific population groups. This definition is focused on the risk to society rather than to a specific individual and is termed 'Societal Risk'. In relation to the process operations we can identify specific groups of people who work on or live close to the installation; for example, communities living or working close to the plant.
This involves identifying opportunities to reduce the likelihood and/or consequence of an accident.
Risk-reduction measures include those to prevent incidents (i.e. reduce the likelihood of occurrence) to control incidents (i.e. limit the extent & duration of a hazardous event) and to mitigate the effects (i.e. reduce the consequences). Preventive measures, such as using inherently safer designs and ensuring asset integrity, should be used wherever practicable. In many cases, the measures to control and mitigate hazards and risks are simple and obvious and involve modifications to conform to standard practice. The general hierarchy of risk reducing measures is: